USN	[-]		
	1									i	-	

Seventh Semester B.E. Degree Examination, July/August 2022 Machine Learning

Time: 3 hrs. Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. What is Machine Learning? List the applications of Machine learning. (03 Marks)
 - b. Explain with neat diagram, the choices in designing a learning system. (10 Marks)
 - c. Describe briefly the issues in machine learning.

(03 Marks)

OR

2 a. Describe the Find-S algorithm. Explain its working by taking enjoy sport concept and

training instances given below:

50, will be treated as malpractice.

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42 · 8

Ex	Sky	Air	Humidity	Wind	Water	Forecast	Enjoy Sport
1		Temp					
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

(08 Marks)

b. Describe candidate elimination algorithm with example.

(08 Marks)

Module-2

3 a. With an example describe decision tree representation.

- (04 Marks) (04 Marks)
- b. Discuss the characteristics of appropriate problems for decision tree learning.c. Write the basic decision tree learning algorithm (ID3)
- (04 Marks)

d. Discuss the capabilities and limitation of ID3.

(04 Marks)

OR

4 a. Give entropy and information gain measure and calculate the information gain of all 4 attributes for the following training example. (10 Marks)

Day	Outlook	Temperature	Humidity	Wind	Play Tennis
D_1	Sunny	Hot	High	Weak	No
D_2	Sunny	Hot	High	Strong	No
D_3	Overcast	Hot	High	Weak	Yes
D_4	Rain	Mild	High	Weak	Yes
D_5	Rain	Cool	Normal	Weak	Yes
D_6	Rain	Cool	Normal	Strong	No
D_7	Overcast	Cool	Normal	Strong	Yes
D_8	Sunny	Mild	High	Weak	No
D_9	Sunny	Cool	Normal	Weak	Yes
D_{10}	Rain	Mild	Normal	Strong	Yes
D ₁₁	Sunny	Mild	Normal	Strong	Yes
D ₁₂	Overcast	Mild	High	Strong	Yes
D ₁₃	Overcast	Hot	Normal	Weak	Yes
D ₁₄	Rain	Mild	High	Strong	No

Table Q4 (a)

b. Explain the issues in decision tree learning.

(06 Marks)

(04 Marks)

		Module-3	
5	a.	Describe the appropriate problems for Neural Network Learning.	(06 Marks)
	b.	Explain perception, gradient descent and delta rule.	(06 Marks)
	c.	Write the gradient descent algorithm.	(04 Marks)
		OR	
6	a.	Explain the Back propagation algorithm for multilayer feed forward network.	(10 Marks)
	b.	Discuss the remarks on the back propagation algorithm.	(06 Marks)
		Module-4	
7	a.	Explain Brute Force MAP learning algorithm.	(08 Marks)
•	b.	Discuss the features of Bayesian learning method.	(04 Marks)
	c.	Derive the expression for maximum likelihood hypothesis for predicting probabil	ities.
	0.	y, , , , , , , , , , , , , , , , , , ,	(04 Marks)
		OR	
8	a.	Explain Naïve Bayes classifier algorithm for example given in Table 4(a).	(08 Marks)
	b.	Explain in detail EM algorithm.	(08 Marks)
		<u>Module-5</u>	
9	a.	Explain K-Nearest Neighbour learning algorithm.	(08 Marks)
	b.	Explain Q-learning algorithm with an example.	(08 Marks)
		OR	
10	a.	Define the following with respect to Binomial distribution:	
		(i) Mean and Variance	
		(ii) Estimation Bias.	
		(iii) Confidence interval.	(06 Marks)
	b.	Write a note on:	
		(i) Two sided and one sided bound.	(03 Marks)
		(ii) Hypothesis testing.	(03 Marks)
		(iii) Comparing learning algorithm.	(04 Marks)